일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- EdgeR
- MACS2
- HTML
- CUT&RUN
- python matplotlib
- scRNAseq analysis
- js
- 싱글셀 분석
- ChIPseq
- ngs
- pandas
- 비타민 C
- DataFrame
- drug development
- CUTandRUN
- Git
- matplotlib
- julia
- scRNAseq
- PYTHON
- Bioinformatics
- CSS
- single cell rnaseq
- single cell analysis
- Batch effect
- cellranger
- github
- drug muggers
- javascript
- single cell
Archives
- Today
- Total
목록Current best practices in single-cell RNA-seq analysis: a tutorial (1)
바이오 대표
[scRNAseq 논문] 싱글셀 RNA 시퀀싱 데이터 분석 흐름 “Current best practices in single-cell RNA-seq analysis: a tutorial”
“Current best practices in single-cell RNA-seq analysis: a tutorial” 논문 요약 요약 scRNAseq analysis tools increase → lack of standardization (+ dependency of language) The paper introduces the typical scRNAseq analysis steps as current best-practice recommendations. count matrix pre-processing QC, normalization, data correction, feature selection, dimensionality reduction cell - and gene-level downs..
논문
2023. 2. 20. 08:58