일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- single cell analysis
- PYTHON
- Git
- 비타민 C
- scRNAseq
- drug muggers
- pandas
- 싱글셀 분석
- python matplotlib
- julia
- matplotlib
- js
- CUT&RUN
- ChIPseq
- cellranger
- CSS
- MACS2
- Batch effect
- single cell
- javascript
- ngs
- Bioinformatics
- CUTandRUN
- drug development
- DataFrame
- EdgeR
- github
- scRNAseq analysis
- HTML
- single cell rnaseq
- Today
- Total
바이오 대표
[scRNAseq 논문] 싱글셀 분석 전체 흐름 "A practical guide to scRNAseq for biomedical research and clinical applications" 본문
[scRNAseq 논문] 싱글셀 분석 전체 흐름 "A practical guide to scRNAseq for biomedical research and clinical applications"
바이오 대표 2023. 2. 11. 10:36"A practical guide to scRNAseq for biomedical research and clinical applications"
Abstract
Biological sample 의 RNAseq을 이용해서 우리는 mRNA을 발견하고 정략분석을 진행 할 수 있고 이를 이용하여, cellular response를 연구 할 수 있다. 2009년, 첫 scRNAseq 연구가 진행된뒤로, 해당 필드의 많은 발전이 있었다. 해당 논문에서는 scRNAseq 연구를 디자인하기 위한 기본 정보들을 소개한다: hardware, protocol choice, QC, data analysis, biological interpretation.
*cellular response: Any process that results in a change in the state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus
Background
DNAseq, chromatin structure, mRNA, non-coding RNA, protein expression, protein modification, metabolites 등을 이용해서 CELL as molecule을 공부 할 수 있다.
- Protein expression
- Gene expression
- RNAseq → GWAS (SNPs 발견)
- expression correlates with cellular traits/changes
Transcriptomics
- Microarray → bulk RNAseq → scRNAseq (cell unit)
- Microarray: tag에 flourescent 를 붙여서 상대적으로 비교
Why consider performing scRNAseq scRNAseq?
- Heterogeneity 확인 가능
- embryonic and immune cells
*cell population: given area 에서 같은 특성을 갖는 group of cells
Basic steps in conducting scRNA-seq?
Step1. 원하는 Tissu 에서 single cell Isolation + Indexing
Step2. mRNA 뽑기 (using T-primers)
Step3. mRNA → cDNA (+ adaptor & UMIs)
Step4. cDNA Amplification (PCR)
Step5. Sequencing
Droplet-based platform (Chromium from 10X)
- Encapsulate thousands of single-cell individually
- Each droplet contains all the necessary reagents for cell lysis, RT, molecular tagging, and eliminating need for sc isolation
What type of material can be assessed by scRNAseq?
- Any eukaryotic cells
- 종종, mouse/human primary cells, tumors, nervous system, haematopoietically cells
- (-) 콜라겐처럼 붙어있는/neighboring cell은 얻기 어렵다.
- (+) cell 보다 nuclei 형태로 얻는 것이 less bias 해서 사용 증가 중
- (-) scRNAseq 은 보통 isolation 하자마자 cell lysis / mRNA capture 필요
- 10X 는 8 sample 제한
- (+) cryopreservation (bank sample)
Which protocol should be employed?
- Research question 에 따라 Protocol 다름
- full-length transcript
- (+) low expression transcripts 확인 가능
- 3’ end transcripts
- full-length transcript
- Issue
- technical variation
- (solve) spike-in
- ERCC controls: set of 92 highly expressed RNA transcripts with known concentration
- can normalize the sequencing depth
- ERCC controls: set of 92 highly expressed RNA transcripts with known concentration
- (solve) spike-in
- technical variation
How many cells must i sequence / what depth?
*depth = # of transcripts detected from each cell
- (-) 세포의 cDNA libraries 가 증가하면, depth 감소
How do single-cell data differ from bulk RNA-seq?
- TPM 사용
- 이유 1: TPM accounts for differences in gene length. (RPKM - only gene length)
- 이유 2: TPM more robust to zero counts
Once i have sequenced my sc cDNA libraries, how do i analyse the data?
- scRNAseq
- QC
- library size, number of detected genes, a fraction of reads mapping to mitochondria encoded genㄷs
- synthetic spike-in RNAs
- Dimension reduction (PCA, t-SNE, GPLVM)
Conclusion
Research question 에따라 이유 있는 experimental design을 만들고 진행해야 한다.