일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- single cell
- HTML
- matplotlib
- javascript
- pandas
- single cell analysis
- CUTandRUN
- cellranger
- single cell rnaseq
- CUT&RUN
- drug muggers
- julia
- github
- js
- DataFrame
- Git
- ngs
- python matplotlib
- MACS2
- EdgeR
- Bioinformatics
- CSS
- ChIPseq
- Batch effect
- scRNAseq analysis
- PYTHON
- drug development
- 싱글셀 분석
- 비타민 C
- scRNAseq
- Today
- Total
바이오 대표
[ 공간전사체 논문 ] FFPE 이용 가능한 공간전사체 툴 비교/밴치마킹 (10x Xenium vs Vizgen MERSCOPE vs Nanostring(bruke) CosMX) "Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues" 2023.12 본문
[ 공간전사체 논문 ] FFPE 이용 가능한 공간전사체 툴 비교/밴치마킹 (10x Xenium vs Vizgen MERSCOPE vs Nanostring(bruke) CosMX) "Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues" 2023.12
바이오 대표 2025. 2. 21. 09:19
⇒ OVERALL
Cell Segmentation 은 지금 2025/02에는 또 달라졌을 수도 있지만 해당 페이퍼에서는 CosMx가 Segmentation은 잘하지만, Cell type recovery based on gene markers는 Xenium이 확실히 뛰어난다. 만약 샘플이 오래되어서 RNA degradation 이 심하면 Xenium와 같이 fewer landing sites, heavily amplified 되는 프로레스가 가장 적합하다. 샘플 퀄리티가 좋으면 어떤 플랫폼이든 비슷한 결과를 보인다.참고로 최근에 'proseg'라고 segmentation하는 툴 나온게 있는데 확인해볼만 하다.
https://github.com/dcjones/proseg
Spatial Transcriptomics (ST) tools
- sequencing-based (sST): place the tissue on barcoded substrate
- image-based (iST): barcoded probe hybridization
- 🙂 Higher spatial resolution and sensitivity of FISH
Sample PreP:
- the need of amplification depends on sample processing, cleared, gel-embedded or photo-bleached
- tradeoffs between imaging time, molecular plex, image are covered
- clearing of the sample → ⬆️ signal quality ❌ follow-up H&E staining or immunostaining = make cell segmentation more challenging
**FFPE (formalin-fixed paraffin-embedded): standard format for clinical sample preservation for pathology due to its ability to maintain tissue morphology and sample stability at room temperature for decades.
Xenium vs MERSCOPE vs CosMx
- different protocols, probe designs, signal amplification strategies and computational processing methods
Xenium | MERSCOPE | CosMx | |
sample prep | 2-3 days | 5-7 days, cutting sample onto MERSCOPE coverslip is a bit difficult | 2 days |
batch processing | 🤔 | 🙂 | 🙂 |
Transcript Amplification | a small number of padlock probes with rolling circle amplification | direct probe hybridization but amplifies by tiling the transcript with many probes | a low number of probes amplified with branch chain hybridization |
Transcripts counts | High | . | High |
Transcript counts per gene | High | . | . |
Cell Segmentation | DAPI → bigger areas | DAPI + membrane markers → tighter which resulting removing more transcripts but more confidently assigned to cells |
|
Cell Type recovery | 🙂 | ~ | atypical gene markers and low expression of canonical markers, |
Study | better suited for branches of biology not well sampled by the 1,000 plex CosMx panel | the higher false positive rates and lower sensitivities of CosMx relative to Xenium could be tolerated for a broader coverage of the biology. |
RESULTS
DATA: 23 FFPE tissue types (7 tumor, 16 normal), > 3.3 M cells, > 190 million transcripts
EXPERIMENTs:
- sensitivity and specificity on shared transcripts
- concordance of the iST data
- cell-level comparisons: evaluating segmentation
- ability to identify cell-type clusters
RESULTs:
- High transcript counts obtained by Xenium and CosMx
- Xenium shows higher transcript counts per gene without sacrificing specificity
- iST platforms are all concordant with orthogonal RNA-seq data sets
- Out of the box segmentation - Xenium은 DAPI(nuclei staining)로만 segmentation을 해서 빈공간들을 세포로 잡아버린다.
- Clustering analysis reveals differences in cell type recovery across platforms
⇒ OVERALL
Cell Segmentation 은 지금 2025/02에는 또 달라졌을 수도 있지만 해당 페이퍼에서는 CosMx가 Segmentation은 잘하지만, Cell type recovery based on gene markers는 Xenium이 확실히 뛰어난다. 만약 샘플이 오래되어서 RNA degradation 이 심하면 Xenium와 같이 fewer landing sites, heavily amplified 되는 프로레스가 가장 적합하다. 샘플 퀄리티가 좋으면 어떤 플랫폼이든 비슷한 결과를 보인다.참고로 최근에 'proseg'라고 segmentation하는 툴 나온게 있는데 확인해볼만 하다.